THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY On weak and strong convergence of numerical approximations of stochastic partial differential equations
نویسنده
چکیده
This thesis is concerned with numerical approximation of linear stochastic partial differential equations driven by additive noise. In the first part, we develop a framework for the analysis of weak convergence and within this framework we analyze the stochastic heat equation, the stochastic wave equation, and the linearized stochastic Cahn-Hilliard, or the linearized Cahn-Hilliard-Cook equation. The general rule of thumb, that the rate of weak convergence is twice the rate of strong convergence, is confirmed. In the second part, we investigate various ways to approximate the driving noise and analyze its effect on the rate of strong convergence. First, we consider the use of frames to represent the noise. We show that if the frame is chosen in a way that is well suited for the covariance operator, then the number of elements of the frame needed to represent the noise without effecting the overall convergence rate of the numerical method may be quite low. Second, we investigate the use of finite element approximations of the eigenpairs of the covariance operator. It turns out that if the kernel of the operator is smooth, then the number of basis functions needed may be substantially reduced. Our analysis is done in a framework based on operator semigroups. It is performed in a way that reduces our results to results about approximation of the respective (deterministic) semigroup.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کامل